ORCA-Quest qCMOS camera


Groundbreaking in concept and unprecedented in performance.

Since the 1980s, Hamamatsu Photonics has continued to develop high-sensitivity, low-noise cameras using its unique camera design technology and has always contributed to the development of cutting-edge scientific and technological research. Now, we are proud to release the ORCA-Quest with ultimate performance. The C15550-20UP is the world's first camera to incorporate the qCMOS image sensor and to be able to resolve the number of photoelectrons using a newly developed dedicated technology. The camera achieves the ultimate in quantitative imaging.


News about ORCA-Quest


ORCA-Quest qCMOS Camera Named SPIE Prism Awards 2022 Finalist 


ORCA-Quest Camera wins the Innovation Award 2022, Biophotonics & Medical Engineering Category 


We are at the dawn of a new era in CMOS and scientific imaging technology. To fully appreciate why the release of our new ORCA-Quest quantitative CMOS (qCMOS) camera with photon-number resolving technology is an engineering feat that can enable new paths of discovery in biology, physics, astronomy and quantum research, we invite you to watch our launch-day webinar by Dr. Peter Seitz. Dr. Seitz will briefly review the history of semiconductor image sensors and the principles of sensor design and show how applying the principles of photon and camera noise combined with advances in semi-conductor manufacturing culminated in the world’s first qCMOS technology.

Laurin Publishing Company, Inc. are producers and owners of the recording from May 19, 2021.

C15550-20UP webinar

White paper

The evolution of imaging technology is directly linked to new scientific achievements. Scientific imaging has moved many experiments from relying on subjective recording into objectively documentable, repeatable, and quantifiable methods. Demanding and extremely valuable techniques such as single-molecule-based methods would not be possible without appropriate image sensors. The novel quantitative CMOS (qCMOS) technology finally reaches the physical limit: reliable quantification of photon numbers within each pixel, eliminating the influence of technology on the “triangle of frustration” (resolution, sensitivity, speed). This white paper discusses the new image sensor technology that is at the heart of the qCMOS camera. Topics include the semiconductor image sensor, the state of the art approaches to quantitative semiconductor image sensors, The qCMOS image sensor, and the challenges for photon number resolving.
Find detailed information in our White Paper below.

c15550-20UP white paper

Four key features

1. Extreme low-noise performance

In order to detect weak light with high signal-to-noise, ORCA-Quest has been designed and optimized to every aspect of the sensor from its structure to its electronics. Not only the camera development but also the custom sensor development has been done with latest CMOS technology, an extremely low noise performance of 0.27 electrons has been achieved.

c15550-20UP feature: low-noise

2. Realization of photon number resolving (PNR) output

Light is a collection of many photons. Photons are converted into electrons on the sensor, and these electrons are called photoelectrons. “Photon number resolving*” is a method of accurately measuring light by counting photoelectrons. In order to count these photoelectrons, camera noise must be sufficiently smaller than the amount of photoelectron signal. Conventional sCMOS cameras achieve a small readout noise, but still larger than photoelectron signal, making it difficult to count photoelectrons. Using advanced camera technology, the ORCA-Quest counts photoelectrons and delivers an ultra-low readout noise of 0.27 electrons rms (@Ultra quiet scan), stability over temperature and time, individual calibration and real-time correction of each pixel value.

* Photon number resolving is unique and quite different from photon counting (More precisely the method resolves the number of photoelectrons. However, since single photon counting instead of single photoelectron counting has been used for a comparable method in this field, we will use the term “photon number resolving”).

c15550-20UP feature: PNR performance

3. Back-illuminated structure and high resolution

High QE is essential for high efficiency of detecting photons and achieved by back-illuminated structure. In conventional back-illuminated sensors, crosstalks occur between pixels due to no pixel separation, and resolutions are usually inferior to those of front-illuminated sensors. The ORCA-Quest qCMOS's sensor has back-illuminated structure for achieving high quantum efficiency, and trench structure in one-by-one pixel for reducing crosstalk.

c15550-20UP feature: Back-illuminated structure and high resolution

4. Realization of a large number of pixels and high speed readout

Photon counting (PC) level images have typically been acquired using electron multiplication camera such as EM-CCD camera with about 0.3 megapixels. However, ORCA-Quest can acquire not only PC level images but also photon number resolving images with 9.4 megapixels. In addition, it is not fair to compare readout speeds of cameras with different pixel number by frame rate. In such a case the pixel rate (number of pixels × frame rate), which is the number of pixels read out per second, is used. Until now, the fastest camera capable of SPC readout was the EM-CCD camera with about 27 megapixel/s, but the ORCA-Quest enables photon number resolving imaging at about 47 megapixel/s, nearly twice as fast.

c15550-20UP feature: Realization of a large number of pixels and high speed readout

Software support

In today's scientific research, it is essential for obtaining optimal results not only to have an excellent digital camera, but also to make full use of an extensive range of camera features; several readout modes, correction functions, more and more pixels and higher and higher readout speeds.

Camera simulation lab

When using a camera for industrial or research applications, it is necessary to select a camera considering various conditions such as wavelength and light intensity of the object to be captured. We offer the "Camera simulation lab", a tool that allows users to intuitively compare the differences in imaging results due to camera performance while checking the simulated images.

c15550-20UP camera simulation engine


Quantum technology

Neutral atom, Ion trap

Neutral atoms and ions can be regarded as so-called qubits because they can take on a superposition state in which even a single atom has multiple properties. This property is being actively investigated to realize quantum computing and quantum simulation. By observing the fluorescence of trapped ions and neutral atoms, the state of the qubit can be determined, and a low-noise camera is used to read out the fluorescence.

c15550-20UP application1

Simulation image (Rb atom@780 nm/Number of atoms: 5 × 5 array/Atomic emission: 2000 photons/Background: 5 photons/Magnification: 20 × (NA: 0.4)/Distance between each atom: 5 μm)


Lucky imaging

When observing stars from the ground, the image of the star can be blurred due to atmospheric turbulence therefore substantially reducing the ability to capture clear images. However, with short exposures and the right atmospheric conditions, you can sometimes capture clear images. For this reason, lucky imaging is a method of acquiring a large number of images and integrating only the clearest ones while aligning them.

c15550-20UP application2

Orion Nebula (Color image with 3 wavelength filters)

Raman spectroscopy

Raman effect is the scattering of light at a wavelength different from that of the incident light, and Raman spectroscopy is a technique for determining the material properties by measuring this wavelength. Raman spectroscopy enables structural analysis at the molecular level, which provides information on chemical bonding, crystallinity, etc.

c15550-20UP application3-1

c15550-20UP application3-2

Delayed fluorescence in plants

Plants release a very small portion of the light energy they absorb for photosynthesis as light over a period of time. This phenomenon is known as delayed fluorescence. By detecting this faint light, it is possible to observe the effects of chemicals, pathogens, the environment, and other stressors on plants.

c15550-20UP application4

Delayed fluorescence of ornamental plants (exposure for 10 seconds after 10 seconds of excitation light quenching)

PC recommendation

With the introduction of the ORCA-Quest, users are now able to stream 9.4 megapixel images to their computers 120 frames per second. The computer recommendations for this high data rate can be met by using the guidelines listed this PC Recommendations for ORCA-Quest.

Related documents

Download contents

"Astronomy Camera application case-study" featuring valuable interviews with astronomers and camera lineups

Astronomy is a field where various researches are being conducted to discover and explore unknown celestial bodies and astronomical phenomena. This brochure introduces examples of such applications and our cameras suitable for each application.

Astronomy camera lineup case study

3D step file

Detailed 3D model of the ORCA-Quest.


Type number C15550-20UP
Imaging device qCMOS image sensor
Effective no. of pixels 4096 (H) × 2304 (V)
Cell size 4.6 μm (H) × 4.6 μm (V)
Effective area 18.841 mm (H) × 10.598 mm (V)
Full well capacity 7000 electrons (typ.)
Readout speed Standard scan*1: 120 frames/s (At full resolution, CoaXPress), 17.6 frames/s (At full resolution, USB)
Ultra quiet scan: 5 frames/s (At full resolution, CoaXPress, USB)
Ultra quiet scan (M17230 option): 25.4 frames/s (At full resolution, CoaXPress), 17.6 frames/s (At full resolution, USB)
Readout noise Standard scan: 0.43 electrons rms (typ.)
Ultra quiet scan: 0.27 electrons rms (typ.)
Ultra quiet scan (M17230 option): 0.30 electrons rms (typ.)
Exposure time Standard scan*1: 7.2 μs to 1800 s
Ultra quiet scan:199.9 ms *2 to 1800 s (internal, edge, level, start)
Ultra quiet scan:200.2 ms *2 to 1800 s (sync readout)
Ultra quiet scan:172.8 μs to 1800 s (global reset edge, global reset level)
Ultra quiet scan (M17230 option): 33.9 μs to 1800 s (33.9 μs steps)
Cooling temperature Forced-air cooled (Ambient temperature: +25 °C) : -20 ℃
Water cooled (Water temperature: +25 °C)*3 : -20 ℃
Water cooled (Max cooling; The water temperature is +20 ℃ and the ambient temperature is +20 ℃) *3: -35 ℃ (typ.)
Dark current Forced-air cooled (Ambient temperature: +25 °C) : 0.016 electrons/pixels/s (typ.)
Water cooled (Water temperature: +25 °C) : 0.016 electrons/pixels/s (typ.)
Water cooled (Max cooling; The water temperature is +20 ℃ and the ambient temperature is +20 ℃) : 0.006 electrons/pixels/s (typ.)
Dynamic range 26 000:1 (rms) (typ.)*4
External trigger mode Edge / Global reset edge / Level / Global reset level / Sync readout / Start
External trigger signal routing SMA
Trigger delay function 0 s to 10 s in 1 μs steps
Trigger output Global exposure timing output / Any-row exposure timing output / Trigger ready output / 3 programmable timing outputs / High output / Low output
External signal output routing SMA
Image processing functions Defect pixel correction (ON or OFF, hot pixel correction 3 steps)
Interface USB 3.1 Gen 1, CoaXPress (Quad CXP-6)
A/D converter 16 bit, 12 bit, 8 bit
Lens mount C-mount*5
Power supply AC100 V to AC240 V, 50 Hz/60 Hz
Power consumption Approx. 155 VA
Ambient operating temperature 0 °C to +40 °C
Ambient storage temperature -10 °C to +50 °C
Ambient operating humidity 30 % to 80 % (With no condensation)
Ambient storage humidity 90 % Max. (With no condensation)
*1: Normal area readout mode only
*2: When global reset edge or global reset level trigger is selected, the exposure time is 172.8 μs to 1800 s. When sync readout trigger is selected, 200.2 ms to 1800 s.
*3: Calculated from the ratio of the full well capacity and the readout noise in ultra quiet scan


Contact us for more information.

  • Literature
  • Price
  • Delivery
  • Custom order
  • Demo
  • Support
  • Other

Contact us